Semi-Discrete Formulations for 1D Burgers Equation

نویسندگان

  • Cibele A. Ladeia
  • Neyva M. L. Romeiro
  • Paulo Laerte Natti
  • Eliandro Rodrigues Cirilo
چکیده

In this work we compare semi-discrete formulations to obtain numerical solutions for the 1D Burgers equation. The formulations consist in the discretization of the time-domain via multi-stage methods of second and fourth order: R11 and R22 Padé approximants, and of the spatial-domain via finite element methods: least-squares (MEFMQ), Galerkin (MEFG) and Streamline-Upwind Petrov-Galerkin (SUPG). Knowing the analytical solutions of the 1D Burgues equation, for different initial and boundary conditions, analyzes were performed for numerical errors from L2 and L∞ norm. We found that the R22 Padé approximants, added to the MEFMQ, MEFG, and SUPG formulations, increased the region of convergence of the numerical solutions, and showed greater accuracy when compared to the solutions obtained by the R11 Padé approximants. We note that the R22 Padé approximants softened the oscillations of the numerical solutions associated to the MEFG and SUPG formulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An H-Galerkin mixed method for the coupled Burgers equation

In this paper, an H-Galerkin mixed finite element method is discussed for the coupled Burgers equations. The optimal error estimates of the semi-discrete and fully discrete schemes of the coupled Burgers equation are derived. Keywords—The coupled Burgers equation; H-Galerkin mixed finite element method; Backward Euler’s method; Optimal error estimates.

متن کامل

Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves

The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...

متن کامل

Quartic B-spline Differential Quadrature Method

A new differential quadrature method based on quartic B-spline functions is introduced. The weighting coefficients are determined via a semi-explicit algorithm containing an algebraic equation system with four-band coefficient matrix. In order to validate the proposed method, the Burgers’ Equation is selected as test problem. The shock wave and the sinusoidal disturbance solutions of the Burger...

متن کامل

Solving a system of 2D Burgers' equations using Semi-Lagrangian finite difference schemes

In this paper, we aim to generalize semi-Lagrangian finite difference schemes for a system of two-dimensional (2D) Burgers' equations. Our scheme is not limited by the Courant-Friedrichs-Lewy (CFL) condition and therefore we can apply larger step size for the time variable. Proposed schemes can be implemented in parallel very well and in fact, it is a local one-dimensional (LOD) scheme which o...

متن کامل

Observability Properties of a Semi-discrete 1d Wave Equation Derived from a Mixed Finite Element Method on Nonuniform Meshes

The goal of this article is to analyze the observability properties for a space semi-discrete approximation scheme derived from a mixed finite element method of the 1d wave equation on nonuniform meshes. More precisely, we prove that observability properties hold uniformly with respect to the mesh-size under some assumptions, which, roughly, measures the lack of uniformity of the meshes, thus e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1506.00289  شماره 

صفحات  -

تاریخ انتشار 2015